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Abstract. Extreme subsets of the set 9': of all p-body matrices are discussed. The concept 
of p-body rank of an n-electron wavefunction is defined and its physical meaning is 
investigated. 

1. Introduction 

The purpose of this paper is to investigate the intrinsic correlation structure of antisym- 
metric wavefunctions. The correlation implied by a wavefunction is revealed by the 
suitability of that wavefunction as a ground state of certain kinds of operators. The 
ground state of a non-interacting n-electron system can simply be determined by the 
fermion statistics, and it is found that these ground states can be described by deter- 
minantal wavefunctions which are regarded as having no dynamical correlation. When 
interaction is introduced into the n-electron system the motion of the electrons becomes 
very complicated. Even when the interaction changes smoothly, the ground state of 
the system may change abruptly, as occurs in the cases treated by the method of 
quasi-averages [l]. The solutions of some model Hamiltonians can be helpful for 
understanding the correlation of electrons. The recently constructed n-electron states 
with symplectic symmetry [2], which are antisymmetrised products of a geminal power 
with some mutually orthogonal geminals besides some spin orbitals and which can 
serve as the ground states of some model Hamiltonians with symplectic or quasispin 
symmetry, can be regarded as describing the correlation associated with such a special 
kind of interactions. 

In density functional theory the ground state is uniquely related to the ground-state 
density [3]. But this theory requires a local 1-body potential. If the potential is 
non-local, the one-to-one relation between ground-state wavefunctions and densities 
breaks down. Instead of density, the 1-matrix (the first-order reduced density matrix) 
must be used [4]. Furthermore, if one relaxes the restriction to a 2-body Coulomb 
interaction and uses a non-local 2-body potential, then it is obvious that the one-to-one 
relation will be between the ground-state wavefunctions and 2-matrices (the second- 
order reduced density matrices). A non-local 1- or 2-body interaction occurs more 
often than one might think. It makes its appearance in two cases at least: when the 
interaction is mediated by other kinds of particles or when it is approximated in a 
finite-dimensional Hilbert space. The latter includes almost every numerical calcula- 
tion. An operator A, approximated by a finite-dimensional matrix (an, ) ,  can also be 
represented by an integral operator with kernel A ( x ,  x ' )  = Z al,cpl(x)cp~(x'),  while the 
ith vector is represented by the function cp,(x) in the position representation of that 

0305-4470/89/ 132453 +07$02.50 @ 1989 IOP Publishing Ltd 2453 



2454 Zeng Zong-Hao 

finite-dimensional Hilbert space. So A(x, x') can never have, as a factor, the 8 function 
6(x - x') to make the integration a multiplicationt. The non-degenerate ground state 
is uniquely related to either the density, the 1-matrix or the 2-matrix, depending on 
the nature of the potential and the interaction between the electrons. If we include 
density into the hierarchy of reduced density matrices, we can still say roughly that if 
the electrons interact with each other through a p-body potential, then the p-matrix 
(the pth-order reduced density matrix) contains all the information needed to describe 
the correlation of the electrons. 

The purpose of this paper is to deduce a physical concept from the general theory 
of reduced density matrices [5-71, i.e. the p-body rank of an n-electron state. The 
significance of this new term is that if a particular n-electron wavefunction becomes 
the ground state of a p-body operator, then the ground state must possess degenerancy 
not less than the p-body rank of that wavefunction. 

In 9 9  2 and 3 we shall introduce the structure of the extreme subsets of 9" and 
S:, respectively, generalising some results of [6,7], then we shall give the definition 
of the p-body rank of an n-electron state in Q 4. By the term 'p-body' we always mean 
something associated with every set of p electrons contained in an n-electron system, 
and the word 'body' may be omitted as in the example 'p-matrix'. 

2. The geometrical structure of P" 

The geometrical structure of the set $3"" consisting of all the n-electron density matrices 
is obvious and was discussed in [8]. In this section we shall give a detailed description 
of its extreme subsets. 

To avoid most mathematical troubles, we suppose the dimension r of the one- 
particle state space V to be finite. The n-electron state space will be denoted by V"l\. 
It is the n-fold antisymmetrised product space of 'V with dimension M = (L). 

All the Hermitian operators defined on V"" consitute a real Euclidean space X" 
with dimension M 2 ,  in which all the operators with trace equal to 1 constitute a 
hyperplane. Denoting the identity operator on X" as I", and taking X = (l /M)I" as 
origin, we then get a real Euclidean space 2" with dimension M2-1 from that 
hyperplane [8]. P" is a convex set in $?" with interior points which are the density 
matrices without zero eigenvalues. The boundary of 9" consists of the density matrices 
which do possess some zero eigenvalues. 

Now, let V be a non-empty subspace of Vi\, and denote all the desnity matrices 
with range in V by 9"( V ) ,  which has the following properties. 

(i) 9"( V )  is a convex subset in 9". A density matrix D E  P"( V )  without zero 
eigenvalue on V is a relative interior point of P"( V ) ;  otherwise it is a relative boundary 
point. 

(ii) If a mixture D = AD, + ( 1  - A ID2, (0 < A < 1, D, , D2 E P"), belongs to 9"( V), 
then D, and D2 also belong to P"( V ) .  

(iii) If D is a relative interior point of 9"( V) then, for every point D, in P"( V), 
except D itself, there is a line segment in 9 " ( V )  with D as an interior point and D,  
an end point. 

t It is wrong to call such a finite-dimensional matrix a local operator and it is doubtful that it is worthwhile 
discussing the problem of whether a matrix is deduced from a local or non-local operator, since in this case 
the density is not enough to determine the ground state. 
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Proof of the properties. 
(i) This statement is obvious. 
(ii) Let VI ,  V2 and V be the ranges of D1, D, and D, respectively. Since A is a 

positive number and D1 and Dz are both positive operators, it is obvious that both VI 
and V2 are contained in V, so property (i i)  results. 

(iii) Since D is a relative interior point of 9'( V), a positive number E can always 
be found such that E is less than the minimal eigenvalue of D. Let x be the maximal 
eigenvalue of D1, of course we can choose E < X .  Then D 2 = a D , + ( 1 - a ) D ,  with 
a = - [ ~ / ( x - ~ ) ] < O , b e l o n g s  to 9 " ( V ) , a n d  thelinesegment D(h)=ADl+(l-A)D2, 
O <  A < 1 ,  also belongs to 9"( V). D is an interior point of this line segment with 
A = - [ a / ( l  - a ) ]  = E / X ,  i.e. D = D ( E / x ) ,  which implies property (iii). 

An extreme subset E of a set K is defined [9] as a subset of K,  such that if x and 
y are two points of K and the interior of the line segment xy has a common point 
with E, then both x and y belong to E. An extreme subset of a convex set is also 
convex, and if it contains an inner point of a line segment in that convex set, it will 
contain the whole line segment. 

The subset 9"( V) and the extrme subsets of 9" are connected through the following 
theorem. 

Theorem 1 .  E is an extreme subset of 9" if and only if there is a subspace V c  VnA 
such that E = 9"( V ) .  

Proof: From the definition of extreme subset and the property (ii) of the subset 8"( V), 
it is obvious that 8"( V) is an extreme subset of 9". To prove that if E is an extreme 
subset of 9", then there is a subspace V c  V"" such that E = 8"( V), we need the 
following lemma. 

Lemma 1 .  If E is a convex subset in P", then there is a subspace V c  V n A  such that 
E c 9"( V) and E has at least one common point with the relative interior of 8"( V). 

Proof: The proof of this lemma is simple and can be stated as follows. 
The range of a mixture must be the union of the ranges of each density matrix 

taking part in the convex combination to form the mixture. So by considering convex 
combinations of the elements of E, we can find at least one element with the largest 
range V, i.e. the ranges of all other elements of E are contained in V. Thus, E c 8"( V) 
and the elements with the largest range V are the points common to E and the relative 
interior of 9"( V). 

From lemma 1 ,  we know that if E is an extreme subset of 9", then there is a 
subspace V c  Yn-' such that E c 9"( V )  and E and 9"( V) have at least one point in 
common. According to the property (iii) of 9"( V )  and the fact that E is an extreme 
subset of P", we know that any point in P"( V) is contained in E, therefore E = 9"( V). 
Thus the theorem 1 is established. 

Now we give the extreme subsets, and the boundary of P", a matrix representation. 
Let Ai, i = 1 , 2 , .  . . , m, be m positive numbers, with Zy=l A i  = 1. Then UAU-' is an 
element of S " ( V ) ,  where A is a density matrix with range in V and U is a unitary 
matrix on V. When U is a unitary matrix on V", then UAU-I may be an element 
of another extreme subset. The form UAU-I with m = 1 , 2 ,  . . , , M - 1, can represent 
all the boundary elements of 9". 
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Let X"( V) denote the set of all the Hermitian operators with range in V c  V"*; 
X"( V) is a hyperplane and 9"( V) is the intersection of 9" with X"( V). 

3. The extreme subsets of 9; 

The set 9f:, consisting of all the n-representable p-matrices, is the image of the set 9" 
under the mapping of the (n, p)  contraction operator Lf:, i.e. Sf: = Lf:(B") [ 6 ] .  Lf: is 
a linear operator; it maps a convex set into a convex set, and the full pre-image of a 
convex set is also convex. The image of an extreme subset is not necessarily an extreme 
subset, but the full pre-image of an extreme subset will be extreme. As to this point, 
let us prove a second theorem. 

Theorem 2. S is an extreme subset of 8: if and only if the full pre-image of S in 9" 
under the mapping of Lf: is an extreme subset of 9". 

Roo$ Let E be the full pre-image in 9" of an extreme subset S of 8:; then S = L f : ( E ) .  
According to theorem 1, we need to prove that there is a subspace V c  V"* such that 
E = 9"( V). 

Since S is convex, E is also convex. According to lemma 1, there is a subspace 
V c  V"" such that E c 9"( V) and E contains at least one relative interior point of 
9"( V). From the property (iii) and the definition of extreme subset, E should contain 
all the elements of 9 " ( V )  if it contains one relative interior point of 9 " ( V ) .  So 
E 2 8"( V) and furthermore E = 9"( V). That is, if S is extreme in 9f:, then its full 
pre-image E in 9" is also extreme. 

Now, suppose the full pre-image of S in 9" is an extreme subset 9"( V); we need 
to prove that S is an extreme subset of 9:. To this end, let 07, D$E 9f:, D p  = 
ADY+(l-A)D$, O < A < l ,  and D P ~ S .  We need to prove DYES and D ; E S .  Since 
Lf: is linear, there must be pre-images D, , D 2 ,  and D of DY, D;, and Dp, respectively, 
such that D = AD,+(l -A)D2 and D E  9"( V). Let the range of D be V'c V and the 
ranges of D ,  and 0, be VI and V,, respectively; then the convex combination relation 
immediately leads to V x  V = VI and V,. Therefore D,  E 9"( V) and D,E 9"( V). The 
proof is finished. 

An extreme subset containing only one point is an extreme point. As a corollary 
one immediately gets the theorem in [6 ,7] ,  which is as follows. 

D p  is an extreme point of 9f: if and only if there is a subspace V c  V"" such that the 
full pre-image of D p  in 8" is just 8"( V). 

As an example we discuss the extreme subsets of 8;. 
9: is the set of all 1-matrices. It is known [5] that the set of all the extreme points 

of 9: consists of all the 1-matrices of determinantal wavefunctions. For any subspace 
V0c Y with dimension n, there is only one determinantal wavefunction in Yon" and 
there is only one 1-matrix with range in Yo. 

For any subspace VI with dimension more than n in V, denote the set of all the 
1-matrices with range in V, by 9!,(Y,)  and denote the set of all the density matrices 
with range in V;" by 9"(VT"); then it is obvious that the full pre-image of 9!,(V,)  
in 8" is 8"(V;,'). Therefore, 9!,('Vl) is an extreme subset of 9;. 
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Suppose Vo is a subspace of V with dimension m d n, while VI is another subspace 
of V with dimension greater than n - m, and there is no intersection between Vo and 
V,. Denote by Si(Vo,  Yl) the set of all the 1-matrices with range You VI and such 
that Yo is a subspace of the eigenspace belonging to the eigenvalue l / n  of each 
1-matrix. Then one can easily know that the full pre-image of P!,(Vo, VI) in 9" is 
8"( VE(" A V:n-m)"),  i.e. the set of all the density matrices with range i:i the antisymmetric 
product space Vr ' A ?"(in-"" of Vr' and V\"-"' . So P!,( Yo,  VI) is also an extreme 
subset of S!,, and it is the general form of an extreme subset of Pt. When m = n, all 
the 1-matrices in Si (  Yo,  TI) should have their range in Vo, since the trace of a 1-matrix 
must be equal to 1, so S!,(Vo, Vi) reduces to 9!,(Vo), which contains only one 
element-the 1-matrix of the determinantal wavefunction in V: '. When m = 0, 
P!,(Vo, Vi) reduces to P!,(Vl), which has been discussed above. 

It can be proved that any other convex subset S which cannot be expressed in the 
form S!,(Vo, 'Vi) is not an extreme subset of 9:. The proof is simple. Again using 
the fact that the range of the convex combination of several positive operators is just 
the union of the ranges of each individual operator taking part in that combination, 
we can find all the elements in S having the largest range. They must have a common 
range with the ranges of all other elements contained in it. Furthermore, since l / n  is 
the largest possible eigenvalue of any 1-matrix, the degenerancy of the eigenvalue l / n  
for a convex combination of several 1-matrices will be less than the degeneracies of 
the same eigenvalue for the 1-matrices taking part in that combination. Then we can 
find the elements with the lowest degeneracy of the eigenvalue 1/ n among the elements 
with the largest range, again by making convex combinations. Suppose 0;) is such an 
element, and Sr, U VI is its range, where To is its eigenspace belonging to the eigenvalue 
l /n .  S must be contained in 8!,(Vo, V,) and has a common point 0; with the interior 
of 9!,(Vo, VI). On the other hand, S cannot contain all the elements of 9:(V0, VI), 
otherwise S would be equal to St( ?/a, VI). Since 0; is in the interior of P!,( Yo,  S i l ) ,  
for any point 0: in 9!,( Yo,  VI) there must be a line segment completely contained in 
S!,(Vo, VI) and with D; is an end point while 0: is an interior point, according to 
lemma 1. If we choose such a Dt which is not in S, then we have found a line segment 
in P!, such that S contains one of its inner points, but does not contain the whole line 
segment. So S cannot be an extreme subset of S:. 

To conclude, the extreme subsets of 8: are all of the form 9!,(Vo, VI), which 
consists of the 1-matrices whose eigenspaces, corresponding to eigenvalue 1/ n, contain 
To and whose range is in Vou VI .  

4. The p-body rank of an n-electron state 

The extreme subsets of S: are connected with the extreme subsets of P" through 
theorem 2,  and provide a tool for analysing the intrinsic correlation structure of the 
n-electron wavefunction and density matrix. This is what we shall do in this section. 
To begin with, we make two definitions. 

DeJnition 1. If the full pre-image of an extreme subset E of P: in 9" is P"( V ) ,  then 
call P"( V )  a p-extreme subset of 9", and V a p-subspace of V"". 

Theorem 2 gives a one-to-one relation between the extreme subsets of 9: and the 
p-extreme subsets of 9" or the p-subspaces of V",'. Of course, not all of the extreme 
subsets of g n  are p-extreme subsets and not all of the subspaces of V" ' are p-subspaces. 
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It is known that all extreme points are exposed [7]. This result can be simply 
generalised to give that all the extreme subsets of 9; are exposed subsets in our 
finite-dimensional case. Therefore the p-subspaces here are the same as those in [6]. 
9: is an extreme subset of itself, therefore V'"' and Y" are a p-space and a 

p-extreme subset, respectively. From this view point, any wavefunction belongs to 
some p-subspace and any density matrix belongs to some p-extreme subset. We make 
the following further definition. 

Dejni t ion 2. If a p-extreme subset 8"( V) contains D, and there is no other p-extreme 
subset containing D contained in 9"( V), then 9"( V) will be called the minimal 
p-extreme subset containing D, while the dimension of V will be called the p-body 
rank of D. 

If the minimal p-extreme subset containing D( +) is 8" ( V), then call V the minimal 
p-subspace containing + and the dimension of V the p-body rank of +. 

The concept of the minimal p-extreme subset containing a density matrix and the 
minimal p-subspace containing a wavefunction connects the geometrical structure of 
Sf: with the intrinsic correlation structure of the wavefunction. The physical meaning 
of these new terms is given by the following theorem. 

Theorem 3. If + is a ground state of a p-body operator H, and the p-body rank of + 
is S, then if the minimal p-subspace containing + is V, the degeneracy of the ground 
state of H is at least S, and the ground-state eigenspace contains V. 

ProoJ: Suppose E is the minimal extreme subset containing D p ( + ) .  E is a convex set 
whose boundary consists of its extreme subsets, which are also extreme subsets of 9:. 
So D p ( + )  must be in the relative interior of E, otherwise it would be contained in 
another extreme subset of E, contrary to the minimal condition. For each point DY 
in E, except D p ( + ) ,  there must be a line segment with DY as an end point and LIP(+)  
as an interior point, i.e. L I P ( + )  = AD:+ (1 - A)D: (O< A < l),  where 0; is another 
point contained in E. 

Now, since + is a ground state, (H)($) = Tr( HD( +)) = (,")Tr( HPDP( +)) is the 
minimum of the average values of H. Where r : ( H p )  = H and ri is the expansion 
operator [6]. The fact that 

( H ) ( $ )  = (,")[ATr(HPDY)+(l -A)Tr(HPD:)] 

tells us that 

( H ) , $ )  = (i) Tr(HPDf)  = (i) Tr(HPD;) 

otherwise (:) Tr(HPD:) or (i) Tr(HPDg) will be less than (H)($,. When DY runs over 
all the elements in E, except D p ( + ) ,  its pre-images in 9"( V) run over all the elements 
in 9"( V), except that of D p ( + ) .  So we conclude that, for any element D in Y"( V), 
(H)(+) = Tr( HD) .  The theorem follows. 

Example. The 1-body rank of + = c,1123)+ c21456), where I c , ~ * + ~ c ~ / ~  = 1. Here we have 
denoted the normalised determinantal wavefunction with one electron in each of the 
spin orbitals ii), l j )  and Ik) by lijk). 

The 1-matrix of + is given by 

D'(+) = lc,12D'(123)+lc212D1(456) 
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with 

D'(456) = f(I4)(41+ 15)(51 + l6)(61). 

Denote the one-particle space spanned by 1 l ) ,  12), . . . ,16) by Zr, , and let V = ViA; the 
dimension of V is 20 = (;). The image of S3( V) is Si( VI) which consists of the 
1-matrices with ranges in VI.  The full pre-image of Pi( Yl) in P3 is S3( V), so Pi( VI) 
is an extreme subset of 9;. D'(+)  is a relative interior point of Pi(Zrl). S i (Yl )  is 
the minimal extreme subset containing D'(+).  Therefore, S3( V) is the minimal 1-body 
extreme subset containing D'(+),  and V is the minimal 1-subspace containing +. The 
one-body rank of $I is 20. If a I-body operator has + as its ground state, then the 
degeneracy of its ground state is at least 20. The simplest 1-body operator with + as 
its ground state may be 

H = a : a , .  
, = 7  

It is obvious that the ground-state eigenvalue of H is zero, its ground-state eigenspace 
is V with degeneracy 20. 

In general, if the eigenspace of D'(+)  belonging to eigenvalue l / n  is To, while 
the range of D'(+) is V r A u  Zr(ln-m).4, then the minimal extreme subset containing 
D'(+)  is 9"!,(Zro, V I ) .  The 1-subspace containing + is 7 , " " ~  V\"')'', where m is the 
dimension of Yo. Suppose the dimension of VI is s; the 1-body rank of CL is ( n : m ) .  
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